Aerosol Loading and Optical Properties during the May 2003 SGP ARM Aerosol IOP

Melissa Melvin – Northern Illinois University

V. Rao Kotamarthi – Argonne National Laboratory

August 16th, 2004 GCEP End-of-Summer Workshop

Why are aerosols so important?

ARM Aerosol IOP 2003

 May 5 – May 31 at the Southern Great Plains (SGP) ARM site in north central Oklahoma.

ARM Aerosol IOP 2003

- May 5 May 31 at the Southern Great Plains (SGP) ARM site in north central Oklahoma.
- Enhanced ground based measurements
 - Optical properties (e.g. scattering, absorption, AOD)
 - Ozone and condensation particle concentrations
 - Particle chemical composition
- CIRPAS Twin Otter aircraft conducted 16 flights over 15 days totaling 60.6 flight hours.
 - In situ optical properties
 - In situ particle size and CCN concentrations
 - In situ vertical profiles of aerosol properties and WV

Aerosol Optical Properties Calculations

- Used Mie code developed by Michael Mishchenko at the NASA Goddard Institute for Space Studies, New York.
- Inputs
 - Distribution type
 - Particle size range
 - Wavelength
 - Refractive index

- Outputs
 - Single scattering albedo
 - Asymmetry parameter
 - Extinction cross section

0-6km AOD for MRI = .005 at $\lambda = .55 \mu m$

III AOD IOI WIKI – .003	at Λ
t = .012	6.0 km 5.5 km
t = .018	
t = .189	5.0 km
t = .060	4.5 km
t = .074	4.0 km
t = .076	3.5 km
	3.0 km
t = .086	2.5 km
t = .115	2.0 km
t = .119	1.5 km
t = .185	1.0 km
t = .282	0.5 km
t = .340	0.0 km

Aerosol Optical Depth

$$t = \int (C_{ext} * N) dz$$

Cext = average extinction cross section per particle

(Liou, 1992)

 $N = particle density (\# / m^3)$

$$dN/dlogr = A r^{((1-3b)/b)} exp(-r/ab)$$
where $0 < b < 0.5$ (Mishchenko et al., 1999)

r = mean radius

A = constant

a = coefficient

Column Radiative Forcing

```
\Delta F = -\frac{1}{2}Ft \ T^2(1-Ac)(1-Rs)^2 \ \beta \ \delta a (Charlson et al., 1992)

Ft = global \ mean \ TOA \ radiative \ flux

T = fraction \ on \ incident \ light \ transmitted \ by \ atm. \ Above aerosol \ layer

Ac = fractional \ cloud \ cover

Rs = mean \ albedo \ of \ underlying \ surface

\beta = fraction \ of \ radiation \ scattered \ upward \ by \ aerosol

\delta a = mean \ optical \ depth \ of \ the \ aerosol
```

$$\beta = \frac{1}{2}(1-g)$$
 (Wiscombe and Grams, 1976)
 $g = \text{scattering asymmetry parameter}$

Column Radiative Forcing

For MRI = .005 with β = .191

Albedo	AOD	$\Delta F(w/m^2)$
0.4	0.3	-8.16
0.4	0.5	-13.61
0.4	0.8	-21.77
0.4	1.2	-32.65
0.4	1.5	-40.81

Albedo	AOD	$\Delta F(w/m^2)$
0.6	0.3	-3.63
0.6	0.5	-6.05
0.6	0.8	-9.67
0.6	1.2	-14.51
0.6	1.5	-18.14

For MRI = .025 with β = .136

Albedo	AOD	$\Delta F(w/m^2)$
0.4	0.3	-5.81
0.4	0.5	-9.68
0.4	0.8	-15.49
0.4	1.2	-23.23
0.4	1.5	-29.05

Albedo	AOD	$\Delta F(w/m^2)$
0.6	0.3	-2.58
0.6	0.5	-4.30
0.6	0.8	-6.89
0.6	1.2	-10.33
0.6	1.5	-12.91

NOAA HYSPLIT MODEL
Backward trajectories ending at 17 UTC 27 May 03
FNL Meteorological Data

May 27th, 2003

Conclusions

- ARM aerosol IOPs are important in helping scientists improve climate models by increasing the process scale understanding of the aerosols and their impact on climate.
- Aerosol chemical (e.g. sulfate, black carbon) and physical properties (e.g. shape, age) are important as shown in the tables.
- The radiative forcing calculations we did indicate the importance of atmospheric aerosols on the radiative balance. For example the radiative forcing calculated is in the range of -2 to -10 w/m², the same order of magnitude as CO2 and other trace gas positive feedbacks.

Acknowledgements

- DOE Global Change Education Program
- Argonne National Laboratory
- ARM Program

- V. Rao Kotamarthi, GCEP Mentor
- Jeff Gaffney and Milt Constantin